Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115.282
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200250, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38662990

ABSTRACT

BACKGROUND AND OBJECTIVES: The role of B cells in the pathogenic events leading to relapsing multiple sclerosis (R-MS) has only been recently elucidated. A pivotal step in defining this role has been provided by therapeutic efficacy of anti-CD20 monoclonal antibodies. Indeed, treatment with anti-CD20 can also alter number and function of other immune cells not directly expressing CD20 on their cell surface, whose activities can contribute to unknown aspects influencing therapeutic efficacy. We examined the phenotype and function of cytotoxic lymphocytes and Epstein-Barr virus (EBV)-specific immune responses in people with R-MS before and after ocrelizumab treatment. METHODS: In this prospective study, we collected blood samples from people with R-MS (n = 41) before and 6 and 12 months after initiating ocrelizumab to assess the immune phenotype and the indirect impact on cytotoxic functions of CD8+ T and NK cells. In addition, we evaluated the specific anti-EBV proliferative responses of both CD8+ T and NK lymphocytes as surrogate markers of anti-EBV activity. RESULTS: We observed that while ocrelizumab depleted circulating B cells, it also reduced the expression of activation and migratory markers on both CD8+ T and NK cells as well as their in vitro cytotoxic activity. A comparable pattern in the modulation of immune molecules by ocrelizumab was observed in cytotoxic cells even when patients with R-MS were divided into groups based on their prior disease-modifying treatment. These effects were accompanied by a significant and selective reduction of CD8+ T-cell proliferation in response to EBV antigenic peptides. DISCUSSION: Taken together, our findings suggest that ocrelizumab-while depleting B cells-affects the cytotoxic function of CD8+ and NK cells, whose reduced cross-activity against myelin antigens might also contribute to its therapeutic efficacy during MS.


Subject(s)
Antibodies, Monoclonal, Humanized , CD8-Positive T-Lymphocytes , Herpesvirus 4, Human , Immunologic Factors , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Female , Adult , Male , Herpesvirus 4, Human/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Immunologic Factors/pharmacology , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Prospective Studies , Cell Proliferation/drug effects , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects
2.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588339

ABSTRACT

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Subject(s)
Herpes Zoster , Herpesvirus 3, Human , Lymphocyte Activation , Receptors, Antigen, T-Cell , Humans , Herpes Zoster/immunology , Herpes Zoster/virology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Lymphocyte Activation/immunology , Herpesvirus 3, Human/immunology , Female , Middle Aged , Male , CD4-Positive T-Lymphocytes/immunology , Aged , Adult , Epitopes, T-Lymphocyte/immunology
3.
Cell Rep ; 43(4): 114086, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598335

ABSTRACT

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.


Subject(s)
Interleukin-12 , Probiotics , Programmed Cell Death 1 Receptor , Animals , Interleukin-12/metabolism , Probiotics/pharmacology , Mice , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Humans , Mice, Inbred C57BL , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Escherichia coli/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles , Female , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology
4.
Immunity ; 57(4): 632-648, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599163

ABSTRACT

One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.


Subject(s)
Dendritic Cells , Immunity, Innate , Adaptive Immunity , Receptors, Pattern Recognition/metabolism , Lymphocyte Activation
5.
Cell Rep ; 43(4): 114089, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38615318

ABSTRACT

Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes , Killer Cells, Natural , Natural Cytotoxicity Triggering Receptor 2 , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Natural Cytotoxicity Triggering Receptor 2/metabolism , Cytomegalovirus/immunology , Haplotypes , Lymphocyte Activation/immunology
6.
J Immunother Cancer ; 12(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631710

ABSTRACT

Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Humans , Immune Checkpoint Inhibitors , Cytokines/metabolism , Lymphocyte Activation
7.
Transpl Int ; 37: 12720, 2024.
Article in English | MEDLINE | ID: mdl-38655204

ABSTRACT

Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Everolimus , Immunosuppressive Agents , Mycophenolic Acid , Sirolimus , T-Lymphocytes , Tacrolimus , Humans , Cytomegalovirus Infections/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Cytomegalovirus/immunology , Sirolimus/pharmacology , Sirolimus/therapeutic use , Lymphocyte Activation/drug effects , Prednisolone/therapeutic use , Organ Transplantation , Cell Proliferation/drug effects
8.
Front Immunol ; 15: 1335932, 2024.
Article in English | MEDLINE | ID: mdl-38655265

ABSTRACT

Ex vivo genetically-modified cellular immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapies, have generated significant clinical and commercial outcomes due to their unparalleled response rates against relapsed and refractory blood cancers. However, the development and scalable manufacture of these novel therapies remains challenging and further process understanding and optimisation is required to improve product quality and yield. In this study, we employ a quality-by-design (QbD) approach to systematically investigate the impact of critical process parameters (CPPs) during the expansion step on the critical quality attributes (CQAs) of CAR-T cells. Utilising the design of experiments (DOE) methodology, we investigated the impact of multiple CPPs, such as number of activations, culture seeding density, seed train time, and IL-2 concentration, on CAR-T CQAs including, cell yield, viability, metabolism, immunophenotype, T cell differentiation, exhaustion and CAR expression. Initial studies undertaken in G-Rex® 24 multi-well plates demonstrated that the combination of a single activation step and a shorter, 3-day, seed train resulted in significant CAR-T yield and quality improvements, specifically a 3-fold increase in cell yield, a 30% reduction in exhaustion marker expression and more efficient metabolism when compared to a process involving 2 activation steps and a 7-day seed train. Similar findings were observed when the CPPs identified in the G-Rex® multi-well plates studies were translated to a larger-scale automated, controlled stirred-tank bioreactor (Ambr® 250 High Throughput) process. The single activation step and reduced seed train time resulted in a similar, significant improvement in CAR-T CQAs including cell yield, quality and metabolism in the Ambr® 250 High Throughput bioreactor, thereby validating the findings of the small-scale studies and resulting in significant process understanding and improvements. This study provides a methodology for the systematic investigation of CAR-T CPPs and the findings demonstrate the scope and impact of enhanced process understanding for improved CAR-T production.


Subject(s)
Bioreactors , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Culture Techniques/methods , Lymphocyte Activation
9.
Front Immunol ; 15: 1341013, 2024.
Article in English | MEDLINE | ID: mdl-38655263

ABSTRACT

Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.


Subject(s)
Factor VIII , Immunoglobulin Fc Fragments , Killer Cells, Natural , Lymphocyte Activation , Receptors, IgG , Recombinant Fusion Proteins , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Factor VIII/immunology , Receptors, IgG/metabolism , Receptors, IgG/immunology , Lymphocyte Activation/immunology , Lymphocyte Activation/drug effects , Immunoglobulin Fc Fragments/immunology , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Cell Degranulation/immunology , Interferon-gamma/metabolism , Protein Binding , Hemophilia A/immunology , Hemophilia A/drug therapy
10.
Oncoimmunology ; 13(1): 2344905, 2024.
Article in English | MEDLINE | ID: mdl-38659649

ABSTRACT

T cell immunity is critical for human defensive immune response. Exploring the key molecules during the process provides new targets for T cell-based immunotherapies. CMC1 is a mitochondrial electron transport chain (ETC) complex IV chaperon protein. By establishing in-vitro cell culture system and Cmc1 gene knock out mice, we evaluated the role of CMC1 in T cell activation and differentiation. The B16-OVA tumor model was used to test the possibility of targeting CMC1 for improving T cell anti-tumor immunity. We identified CMC1 as a positive regulator in CD8+T cells activation and terminal differentiation. Meanwhile, we found that CMC1 increasingly expressed in exhausted T (Tex) cells. Genetic lost of Cmc1 inhibits the development of CD8+T cell exhaustion in mice. Instead, deletion of Cmc1 in T cells prompts cells to differentiate into metabolically and functionally quiescent cells with increased memory-like features and tolerance to cell death upon repetitive or prolonged T cell receptor (TCR) stimulation. Further, the in-vitro mechanistic study revealed that environmental lactate enhances CMC1 expression by inducing USP7, mediated stabilization and de-ubiquitination of CMC1 protein, in which a mechanism we propose here that the lactate-enriched tumor microenvironment (TME) drives CD8+TILs dysfunction through CMC1 regulatory effects on T cells. Taken together, our study unraveled the novel role of CMC1 as a T cell regulator and its possibility to be utilized for anti-tumor immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Mice, Knockout , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Humans , Mice, Inbred C57BL , Cell Differentiation/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
11.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661717

ABSTRACT

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Subject(s)
CD4-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections , Plasma Cells , Animals , Plasma Cells/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Lung/immunology , Lung/virology , Lung/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Killer Cells, Natural/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Memory B Cells/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology
12.
Cancer Immunol Immunother ; 73(6): 110, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662248

ABSTRACT

Interleukin (IL)-33 is an important cytokine in the tumour microenvironment; it is known to promote the growth and metastasis of solid cancers, such as gastric, colorectal, ovarian and breast cancer. Our group demonstrated that the IL-33/ST2 pathway enhances the development of squamous cell carcinoma (SCC). Conversely, other researchers have reported that IL-33 inhibits tumour progression. In addition, the crosstalk between IL-33, cancer cells and immune cells in SCC remains unknown. The aim of this study was to investigate the effect of IL-33 on the biology of head and neck SCC lines and to evaluate the impact of IL-33 neutralisation on the T cell response in a preclinical model of SCC. First, we identified epithelial and peritumoural cells as a major local source of IL-33 in human SCC samples. Next, in vitro experiments demonstrated that the addition of IL-33 significantly increased the proliferative index, motility and invasiveness of SCC-25 cells, and downregulated MYC gene expression in SCC cell lines. Finally, IL-33 blockade significantly delayed SCC growth and led to a marked decrease in the severity of skin lesions. Importantly, anti-IL-33 monoclonal antibody therapy increase the percentage of CD4+IFNγ+ T cells and decreased CD4+ and CD8+ T cells secreting IL-4 in tumour-draining lymph nodes. Together, these data suggest that the IL-33/ST2 pathway may be involved in the crosstalk between the tumour and immune cells by modulating the phenotype of head and neck SCC and T cell activity. IL-33 neutralisation may offer a novel therapeutic strategy for SCC.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Interleukin-33 , Lymphocyte Activation , Interleukin-33/metabolism , Humans , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Animals , Lymphocyte Activation/immunology , Neoplasm Invasiveness , Mice , Cell Line, Tumor , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Female
13.
Front Immunol ; 15: 1353570, 2024.
Article in English | MEDLINE | ID: mdl-38646527

ABSTRACT

Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.


Subject(s)
Dendritic Cells , Fucose , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Fucose/metabolism , Antigen Presentation , Female , Mice, Inbred C57BL , Cell Polarity , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Melanoma, Experimental/immunology , Lymphocyte Activation/immunology
14.
Immunohorizons ; 8(4): 326-338, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38625120

ABSTRACT

The BCR allows for Ag-driven B cell activation and subsequent Ag endocytosis, processing, and presentation to recruit T cell help. Core drivers of BCR signaling and endocytosis are motifs within the receptor's cytoplasmic tail (primarily CD79). However, BCR function can be tuned by other proximal cellular elements, such as CD20 and membrane lipid microdomains. To identify additional proteins that could modulate BCR function, we used a proximity-based biotinylation technique paired with mass spectrometry to identify molecular neighbors of the murine IgM BCR. Those neighbors include MHC class II molecules, integrins, various transporters, and membrane microdomain proteins. Class II molecules, some of which are invariant chain-associated nascent class II, are a readily detected BCR neighbor. This finding is consistent with reports of BCR-class II association within intracellular compartments. The BCR is also in close proximity to multiple proteins involved in the formation of membrane microdomains, including CD37, raftlin, and Ig superfamily member 8. Known defects in T cell-dependent humoral immunity in CD37 knockout mice suggest a role for CD37 in BCR function. In line with this notion, CRISPR-based knockout of CD37 expression in a B cell line heightens BCR signaling, slows BCR endocytosis, and tempers formation of peptide-class II complexes. These results indicate that BCR molecular neighbors can impact membrane-mediated BCR functions. Overall, a proximity-based labeling technique allowed for identification of multiple previously unknown BCR molecular neighbors, including the tetraspanin protein CD37, which can modulate BCR function.


Subject(s)
Immunity, Humoral , Membrane Proteins , Animals , Mice , Cell Line , Lymphocyte Activation , Mice, Knockout , Receptors, Antigen, B-Cell
15.
J Immunother Cancer ; 12(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621815

ABSTRACT

BACKGROUND: Cancer immunotherapy including immune checkpoint inhibitors is only effective for a limited population of patients with cancer. Therefore, the development of novel cancer immunotherapy is anticipated. In preliminary studies, we demonstrated that tetracyclines enhanced T-cell responses. Therefore, we herein investigated the efficacy of tetracyclines on antitumor T-cell responses by human peripheral T cells, murine models, and the lung tumor tissues of patients with non-small cell lung cancer (NSCLC), with a focus on signaling pathways in T cells. METHODS: The cytotoxicity of peripheral and lung tumor-infiltrated human T cells against tumor cells was assessed by using bispecific T-cell engager (BiTE) technology (BiTE-assay system). The effects of tetracyclines on T cells in the peripheral blood of healthy donors and the tumor tissues of patients with NSCLC were examined using the BiTE-assay system in comparison with anti-programmed cell death-1 (PD-1) antibody, nivolumab. T-cell signaling molecules were analyzed by flow cytometry, ELISA, and qRT-PCR. To investigate the in vivo antitumor effects of tetracyclines, tetracyclines were administered orally to BALB/c mice engrafted with murine tumor cell lines, either in the presence or absence of anti-mouse CD8 inhibitors. RESULTS: The results obtained revealed that tetracyclines enhanced antitumor T-cell cytotoxicity with the upregulation of granzyme B and increased secretion of interferon-γ in human peripheral T cells and the lung tumor tissues of patients with NSCLC. The analysis of T-cell signaling showed that CD69 in both CD4+ and CD8+ T cells was upregulated by minocycline. Downstream of T-cell receptor signaling, Zap70 phosphorylation and Nur77 were also upregulated by minocycline in the early phase after T-cell activation. These changes were not observed in T cells treated with anti-PD-1 antibodies under the same conditions. The administration of tetracyclines exhibited antitumor efficacy with the upregulation of CD69 and increases in tumor antigen-specific T cells in murine tumor models. These changes were canceled by the administration of anti-mouse CD8 inhibitors. CONCLUSIONS: In conclusion, tetracyclines enhanced antitumor T-cell immunity via Zap70 signaling. These results will contribute to the development of novel cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , CD8-Positive T-Lymphocytes , Minocycline/metabolism , Minocycline/pharmacology , Signal Transduction , Lymphocyte Activation
16.
PLoS One ; 19(4): e0302406, 2024.
Article in English | MEDLINE | ID: mdl-38635551

ABSTRACT

Natural killer (NK) cells play a crucial role in immunosurveillance independent of antigen presentation, which is regulated by signal balance via activating and inhibitory receptors. The anti-tumor activity of NK cells is largely dependent on signaling from target recognition to cytolytic degranulation; however, the underlying mechanism remains unclear, and NK cell cytotoxicity is readily impaired by tumor cells. Understanding the activation mechanism is necessary to overcome the immune evasion mechanism, which remains an obstacle in immunotherapy. Because calcium ions are important activators of NK cells, we hypothesized that electrical stimulation could induce changes in intracellular Ca2+ levels, thereby improving the functional potential of NK cells. In this study, we designed an electrical stimulation system and observed a correlation between elevated Ca2+ flux induced by electrical stimulation and NK cell activation. Breast cancer MCF-7 cells co-cultured with electrically stimulated KHYG-1 cells showed a 1.27-fold (0.5 V/cm) and 1.55-fold (1.0 V/cm) higher cytotoxicity, respectively. Electrically stimulated KHYG-1 cells exhibited a minor increase in Ca2+ level (1.31-fold (0.5 V/cm) and 1.11-fold (1.0 V/cm) higher), which also led to increased gene expression of granzyme B (GZMB) by 1.36-fold (0.5 V/cm) and 1.58-fold (1.0 V/cm) by activating Ca2+-dependent nuclear factor of activated T cell 1 (NFAT1). In addition, chelating Ca2+ influx with 5 µM BAPTA-AM suppressed the gene expression of Ca2+ signaling and lytic granule (granzyme B) proteins by neutralizing the effects of electrical stimulation. This study suggests a promising immunotherapeutic approach without genetic modifications and elucidates the correlation between cytolytic effector function and intracellular Ca2+ levels in electrically stimulated NK cells.


Subject(s)
Calcium , Neoplasms , Humans , Granzymes/metabolism , Calcium/metabolism , Killer Cells, Natural , Lymphocyte Activation , Neoplasms/metabolism , Cytotoxicity, Immunologic
17.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38557723

ABSTRACT

CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαß+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αß T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.


Subject(s)
CD4-Positive T-Lymphocytes , T-Lymphocytes, Helper-Inducer , Humans , CD8-Positive T-Lymphocytes , Lymphocyte Activation , HLA Antigens , Protein Isoforms/metabolism
18.
Medicine (Baltimore) ; 103(15): e37688, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608099

ABSTRACT

Testicular germ cell tumors (TGCT) are the most common testicular malignancies. KLRB1 is considered to influence the development and progression of a number of cancers. However, it is unclear how the KLRB1 gene functions in TGCT. First, it was determined the expression level of KLRB1 in TGCT using The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas) dataset and GTEx (Genotype-Tissue Expression) dataset. The clinical significance and biological functions of KLRB1 were explored using the TCGA dataset, and we analyzed the correlation of the KLRB1 gene with tumor immunity and infiltrating immune cells using gene set variation analysis and the TIMER database. We found that the expression level of KLRB1 was upregulated in TGCT malignant tissues with the corresponding normal tissues as controls, and KLRB1 expression correlated with clinicopathologic features of TGCT. Functional enrichment analysis suggested that KLRB1 might be involved in immune response and inflammatory response. KLRB1 was highly positively correlated with natural killer cell activation in immune response and positively correlated with tumor-infiltrating immune cells. This study demonstrated for the first time the role of KLRB1 in TGCT, which may serve as a new biomarker associated with immune infiltration and provide a potential therapeutic target for the treatment of TGCT.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Humans , Male , Testicular Neoplasms/genetics , Neoplasms, Germ Cell and Embryonal/genetics , Databases, Factual , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily B
19.
Cell Mol Biol Lett ; 29(1): 52, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609863

ABSTRACT

T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.


Subject(s)
CRISPR-Cas Systems , T-Lymphocytes , Humans , CRISPR-Cas Systems/genetics , Cell Differentiation , Inflammation , Lymphocyte Activation
20.
Crit Rev Immunol ; 44(5): 87-98, 2024.
Article in English | MEDLINE | ID: mdl-38618731

ABSTRACT

Despite advancements in the field of cancer therapeutics, the five-year survival rate remains low in oral cancer patients. Therefore, the effective therapeutics are needed against oral cancer. Also, several studies including ours, have shown severely suppressed function and number of NK cells in oral cancer patients. In this review, we discuss the approach to inhibit the tumor growth and metastasis by direct killing or NK cell-mediated tumor differentiation. This review also provides an overview on supercharging NK cells using osteoclasts and probiotic bacteria, and their efficacy as cancer immunotherapeutic in humanized-BLT mice.


Subject(s)
Mouth Neoplasms , Humans , Animals , Mice , Mouth Neoplasms/therapy , Immunotherapy , Cell Differentiation , Killer Cells, Natural , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...